Read MM TIFF sequence#

class iohub._deprecated.singlepagetiff.MicromanagerSequenceReader(folder, extract_data=False)[source]#
get_array(position)[source]#

return a numpy array for a given position

Parameters:
position: (int) position (aka ome-tiff scene)
Returns:
position: (np.ndarray)
get_image(p: int, t: int, c: int, z: int)[source]#

Get the image slice at dimension P, T, C, Z.

Parameters:
pint

index of the position dimension

tint

index of the time dimension

cint

index of the channel dimension

zint

index of the z dimension

Returns:
NDArray

2D image frame

get_num_positions()[source]#

get total number of scenes referenced in ome-tiff metadata

Returns:
number of positions (int)
get_zarr(position)[source]#

return a zarr array for a given position

Parameters:
position: (int) position (aka ome-tiff scene)
Returns:
position: (zarr.array)
property hcs_position_labels#

Parse plate position labels generated by the HCS position generator, e.g. ‘A1-Site_0’ or ‘1-Pos000_000’, and split into row, column, and FOV names.

Returns:
list[tuple[str, str, str]]

FOV name paths, e.g. (‘A’, ‘1’, ‘0’) or (‘0’, ‘1’, ‘000000’)

read_tiff_series(folder: str)[source]#

given a folder containing position subfolders, each of which contains single-page-tiff series acquired using micro-manager, parse the metadata to map image coordinates to filepaths/names

Parameters:
folder: (str)

project folder containing all position subfolders

Returns:
coord_filename_map (dict)

keys are coordinates and values are filenames. Coordinates follow (p, t, c, z) indexing.

property shape#

Get the underlying data shape as a tuple.

Returns:
tuple

(frames, slices, channels, height, width)