Note
Go to the end to download the full example code.
Coordinate Transform#
This script writes two positions using the high content screening (HCS) OME-Zarr dataset with two FOV in a single well with different coordinate transformations (i.e translation and scaling)
import os
from tempfile import TemporaryDirectory
import numpy as np
from iohub.ngff import TransformationMeta, open_ome_zarr
Set storage path
tmp_dir = TemporaryDirectory()
store_path = os.path.join(tmp_dir.name, "transformed.zarr")
print("Zarr store path", store_path)
Zarr store path /tmp/tmpkcacpph0/transformed.zarr
Create two random sample images
tczyx_1 = np.random.randint(
0, np.iinfo(np.uint16).max, size=(1, 3, 3, 32, 32), dtype=np.uint16
)
tczyx_2 = np.random.randint(
0, np.iinfo(np.uint16).max, size=(1, 3, 3, 32, 32), dtype=np.uint16
)
Coordinate Transformations (T,C,Z,Y,X) By default the translation is the identity matrix
coords_shift = [[1.0, 1.0, 1.0, 10.0, 10.0], [1.0, 1.0, 0.0, -10.0, -10.0]]
img_scaling = [[1.0, 1.0, 1.0, 0.5, 0.5]]
Generate Transformation Metadata
translation = []
for shift in coords_shift:
translation.append(
TransformationMeta(type="translation", translation=shift)
)
scaling = []
for scale in img_scaling:
scaling.append(TransformationMeta(type="scale", scale=scale))
Write 5D data to a new Zarr store
with open_ome_zarr(
store_path,
layout="hcs",
mode="w-",
channel_names=["DAPI", "GFP", "Brightfield"],
) as dataset:
# Create and write to positions
# This affects the tile arrangement in visualization
position = dataset.create_position(0, 0, 0)
position.create_image("0", tczyx_1, transform=[translation[0]])
position = dataset.create_position(0, 0, 1)
position.create_image("0", tczyx_2, transform=[translation[1], scaling[0]])
# Print dataset summary
dataset.print_tree()
/
└── 0
└── 0
├── 0
│ └── 0 (1, 3, 3, 32, 32) uint16
└── 1
└── 0 (1, 3, 3, 32, 32) uint16
Note
To see the coordinate transforms, open the positions individually using napari-ome-zarr. This will duplicate the layers (channels).
Clean up
tmp_dir.cleanup()